diff options
author | P. J. McDermott <pjm@nac.net> | 2013-06-02 10:12:27 (EDT) |
---|---|---|
committer | P. J. McDermott <pjm@nac.net> | 2013-06-02 10:12:27 (EDT) |
commit | 12f19801bf46ecceda69e476119a787e405ff904 (patch) | |
tree | 1101558927e34a0d6082e79bef8e400e9cc94b99 /src/libopkg/.svn/text-base/sha256.c.svn-base | |
parent | 5b483e83bc811d42c9eb0a0e38b45d4549df31bd (diff) |
Delete upstream source directory.
Diffstat (limited to 'src/libopkg/.svn/text-base/sha256.c.svn-base')
-rw-r--r-- | src/libopkg/.svn/text-base/sha256.c.svn-base | 554 |
1 files changed, 0 insertions, 554 deletions
diff --git a/src/libopkg/.svn/text-base/sha256.c.svn-base b/src/libopkg/.svn/text-base/sha256.c.svn-base deleted file mode 100644 index 0ad9444..0000000 --- a/src/libopkg/.svn/text-base/sha256.c.svn-base +++ /dev/null @@ -1,554 +0,0 @@ -/* sha256.c - Functions to compute SHA256 and SHA224 message digest of files or - memory blocks according to the NIST specification FIPS-180-2. - - Copyright (C) 2005, 2006, 2008 Free Software Foundation, Inc. - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see <http://www.gnu.org/licenses/>. */ - -/* Written by David Madore, considerably copypasting from - Scott G. Miller's sha1.c -*/ - -#include <config.h> - -#include "sha256.h" - -#include <stddef.h> -#include <string.h> - -#if USE_UNLOCKED_IO -# include "unlocked-io.h" -#endif - -#ifdef WORDS_BIGENDIAN -# define SWAP(n) (n) -#else -# define SWAP(n) \ - (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24)) -#endif - -#define BLOCKSIZE 4096 -#if BLOCKSIZE % 64 != 0 -# error "invalid BLOCKSIZE" -#endif - -/* This array contains the bytes used to pad the buffer to the next - 64-byte boundary. */ -static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; - - -/* - Takes a pointer to a 256 bit block of data (eight 32 bit ints) and - intializes it to the start constants of the SHA256 algorithm. This - must be called before using hash in the call to sha256_hash -*/ -void -sha256_init_ctx (struct sha256_ctx *ctx) -{ - ctx->state[0] = 0x6a09e667UL; - ctx->state[1] = 0xbb67ae85UL; - ctx->state[2] = 0x3c6ef372UL; - ctx->state[3] = 0xa54ff53aUL; - ctx->state[4] = 0x510e527fUL; - ctx->state[5] = 0x9b05688cUL; - ctx->state[6] = 0x1f83d9abUL; - ctx->state[7] = 0x5be0cd19UL; - - ctx->total[0] = ctx->total[1] = 0; - ctx->buflen = 0; -} - -void -sha224_init_ctx (struct sha256_ctx *ctx) -{ - ctx->state[0] = 0xc1059ed8UL; - ctx->state[1] = 0x367cd507UL; - ctx->state[2] = 0x3070dd17UL; - ctx->state[3] = 0xf70e5939UL; - ctx->state[4] = 0xffc00b31UL; - ctx->state[5] = 0x68581511UL; - ctx->state[6] = 0x64f98fa7UL; - ctx->state[7] = 0xbefa4fa4UL; - - ctx->total[0] = ctx->total[1] = 0; - ctx->buflen = 0; -} - -/* Copy the value from v into the memory location pointed to by *cp, - If your architecture allows unaligned access this is equivalent to - * (uint32_t *) cp = v */ -static inline void -set_uint32 (char *cp, uint32_t v) -{ - memcpy (cp, &v, sizeof v); -} - -/* Put result from CTX in first 32 bytes following RESBUF. The result - must be in little endian byte order. */ -void * -sha256_read_ctx (const struct sha256_ctx *ctx, void *resbuf) -{ - int i; - char *r = resbuf; - - for (i = 0; i < 8; i++) - set_uint32 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i])); - - return resbuf; -} - -void * -sha224_read_ctx (const struct sha256_ctx *ctx, void *resbuf) -{ - int i; - char *r = resbuf; - - for (i = 0; i < 7; i++) - set_uint32 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i])); - - return resbuf; -} - -/* Process the remaining bytes in the internal buffer and the usual - prolog according to the standard and write the result to RESBUF. */ -static void -sha256_conclude_ctx (struct sha256_ctx *ctx) -{ - /* Take yet unprocessed bytes into account. */ - size_t bytes = ctx->buflen; - size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4; - - /* Now count remaining bytes. */ - ctx->total[0] += bytes; - if (ctx->total[0] < bytes) - ++ctx->total[1]; - - /* Put the 64-bit file length in *bits* at the end of the buffer. - Use set_uint32 rather than a simple assignment, to avoid risk of - unaligned access. */ - set_uint32 ((char *) &ctx->buffer[size - 2], - SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29))); - set_uint32 ((char *) &ctx->buffer[size - 1], - SWAP (ctx->total[0] << 3)); - - memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes); - - /* Process last bytes. */ - sha256_process_block (ctx->buffer, size * 4, ctx); -} - -void * -sha256_finish_ctx (struct sha256_ctx *ctx, void *resbuf) -{ - sha256_conclude_ctx (ctx); - return sha256_read_ctx (ctx, resbuf); -} - -void * -sha224_finish_ctx (struct sha256_ctx *ctx, void *resbuf) -{ - sha256_conclude_ctx (ctx); - return sha224_read_ctx (ctx, resbuf); -} - -/* Compute SHA256 message digest for bytes read from STREAM. The - resulting message digest number will be written into the 32 bytes - beginning at RESBLOCK. */ -int -sha256_stream (FILE *stream, void *resblock) -{ - struct sha256_ctx ctx; - char buffer[BLOCKSIZE + 72]; - size_t sum; - - /* Initialize the computation context. */ - sha256_init_ctx (&ctx); - - /* Iterate over full file contents. */ - while (1) - { - /* We read the file in blocks of BLOCKSIZE bytes. One call of the - computation function processes the whole buffer so that with the - next round of the loop another block can be read. */ - size_t n; - sum = 0; - - /* Read block. Take care for partial reads. */ - while (1) - { - n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream); - - sum += n; - - if (sum == BLOCKSIZE) - break; - - if (n == 0) - { - /* Check for the error flag IFF N == 0, so that we don't - exit the loop after a partial read due to e.g., EAGAIN - or EWOULDBLOCK. */ - if (ferror (stream)) - return 1; - goto process_partial_block; - } - - /* We've read at least one byte, so ignore errors. But always - check for EOF, since feof may be true even though N > 0. - Otherwise, we could end up calling fread after EOF. */ - if (feof (stream)) - goto process_partial_block; - } - - /* Process buffer with BLOCKSIZE bytes. Note that - BLOCKSIZE % 64 == 0 - */ - sha256_process_block (buffer, BLOCKSIZE, &ctx); - } - - process_partial_block:; - - /* Process any remaining bytes. */ - if (sum > 0) - sha256_process_bytes (buffer, sum, &ctx); - - /* Construct result in desired memory. */ - sha256_finish_ctx (&ctx, resblock); - return 0; -} - -/* FIXME: Avoid code duplication */ -int -sha224_stream (FILE *stream, void *resblock) -{ - struct sha256_ctx ctx; - char buffer[BLOCKSIZE + 72]; - size_t sum; - - /* Initialize the computation context. */ - sha224_init_ctx (&ctx); - - /* Iterate over full file contents. */ - while (1) - { - /* We read the file in blocks of BLOCKSIZE bytes. One call of the - computation function processes the whole buffer so that with the - next round of the loop another block can be read. */ - size_t n; - sum = 0; - - /* Read block. Take care for partial reads. */ - while (1) - { - n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream); - - sum += n; - - if (sum == BLOCKSIZE) - break; - - if (n == 0) - { - /* Check for the error flag IFF N == 0, so that we don't - exit the loop after a partial read due to e.g., EAGAIN - or EWOULDBLOCK. */ - if (ferror (stream)) - return 1; - goto process_partial_block; - } - - /* We've read at least one byte, so ignore errors. But always - check for EOF, since feof may be true even though N > 0. - Otherwise, we could end up calling fread after EOF. */ - if (feof (stream)) - goto process_partial_block; - } - - /* Process buffer with BLOCKSIZE bytes. Note that - BLOCKSIZE % 64 == 0 - */ - sha256_process_block (buffer, BLOCKSIZE, &ctx); - } - - process_partial_block:; - - /* Process any remaining bytes. */ - if (sum > 0) - sha256_process_bytes (buffer, sum, &ctx); - - /* Construct result in desired memory. */ - sha224_finish_ctx (&ctx, resblock); - return 0; -} - -/* Compute SHA512 message digest for LEN bytes beginning at BUFFER. The - result is always in little endian byte order, so that a byte-wise - output yields to the wanted ASCII representation of the message - digest. */ -void * -sha256_buffer (const char *buffer, size_t len, void *resblock) -{ - struct sha256_ctx ctx; - - /* Initialize the computation context. */ - sha256_init_ctx (&ctx); - - /* Process whole buffer but last len % 64 bytes. */ - sha256_process_bytes (buffer, len, &ctx); - - /* Put result in desired memory area. */ - return sha256_finish_ctx (&ctx, resblock); -} - -void * -sha224_buffer (const char *buffer, size_t len, void *resblock) -{ - struct sha256_ctx ctx; - - /* Initialize the computation context. */ - sha224_init_ctx (&ctx); - - /* Process whole buffer but last len % 64 bytes. */ - sha256_process_bytes (buffer, len, &ctx); - - /* Put result in desired memory area. */ - return sha224_finish_ctx (&ctx, resblock); -} - -void -sha256_process_bytes (const void *buffer, size_t len, struct sha256_ctx *ctx) -{ - /* When we already have some bits in our internal buffer concatenate - both inputs first. */ - if (ctx->buflen != 0) - { - size_t left_over = ctx->buflen; - size_t add = 128 - left_over > len ? len : 128 - left_over; - - memcpy (&((char *) ctx->buffer)[left_over], buffer, add); - ctx->buflen += add; - - if (ctx->buflen > 64) - { - sha256_process_block (ctx->buffer, ctx->buflen & ~63, ctx); - - ctx->buflen &= 63; - /* The regions in the following copy operation cannot overlap. */ - memcpy (ctx->buffer, - &((char *) ctx->buffer)[(left_over + add) & ~63], - ctx->buflen); - } - - buffer = (const char *) buffer + add; - len -= add; - } - - /* Process available complete blocks. */ - if (len >= 64) - { -#if !_STRING_ARCH_unaligned -# define alignof(type) offsetof (struct { char c; type x; }, x) -# define UNALIGNED_P(p) (((size_t) p) % alignof (uint32_t) != 0) - if (UNALIGNED_P (buffer)) - while (len > 64) - { - sha256_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx); - buffer = (const char *) buffer + 64; - len -= 64; - } - else -#endif - { - sha256_process_block (buffer, len & ~63, ctx); - buffer = (const char *) buffer + (len & ~63); - len &= 63; - } - } - - /* Move remaining bytes in internal buffer. */ - if (len > 0) - { - size_t left_over = ctx->buflen; - - memcpy (&((char *) ctx->buffer)[left_over], buffer, len); - left_over += len; - if (left_over >= 64) - { - sha256_process_block (ctx->buffer, 64, ctx); - left_over -= 64; - memcpy (ctx->buffer, &ctx->buffer[16], left_over); - } - ctx->buflen = left_over; - } -} - -/* --- Code below is the primary difference between sha1.c and sha256.c --- */ - -/* SHA256 round constants */ -#define K(I) sha256_round_constants[I] -static const uint32_t sha256_round_constants[64] = { - 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, - 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, - 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, - 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, - 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, - 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, - 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, - 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, - 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, - 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, - 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, - 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, - 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, - 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, - 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, - 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL, -}; - -/* Round functions. */ -#define F2(A,B,C) ( ( A & B ) | ( C & ( A | B ) ) ) -#define F1(E,F,G) ( G ^ ( E & ( F ^ G ) ) ) - -/* Process LEN bytes of BUFFER, accumulating context into CTX. - It is assumed that LEN % 64 == 0. - Most of this code comes from GnuPG's cipher/sha1.c. */ - -void -sha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx) -{ - const uint32_t *words = buffer; - size_t nwords = len / sizeof (uint32_t); - const uint32_t *endp = words + nwords; - uint32_t x[16]; - uint32_t a = ctx->state[0]; - uint32_t b = ctx->state[1]; - uint32_t c = ctx->state[2]; - uint32_t d = ctx->state[3]; - uint32_t e = ctx->state[4]; - uint32_t f = ctx->state[5]; - uint32_t g = ctx->state[6]; - uint32_t h = ctx->state[7]; - - /* First increment the byte count. FIPS PUB 180-2 specifies the possible - length of the file up to 2^64 bits. Here we only compute the - number of bytes. Do a double word increment. */ - ctx->total[0] += len; - if (ctx->total[0] < len) - ++ctx->total[1]; - -#define rol(x, n) (((x) << (n)) | ((x) >> (32 - (n)))) -#define S0(x) (rol(x,25)^rol(x,14)^(x>>3)) -#define S1(x) (rol(x,15)^rol(x,13)^(x>>10)) -#define SS0(x) (rol(x,30)^rol(x,19)^rol(x,10)) -#define SS1(x) (rol(x,26)^rol(x,21)^rol(x,7)) - -#define M(I) ( tm = S1(x[(I-2)&0x0f]) + x[(I-7)&0x0f] \ - + S0(x[(I-15)&0x0f]) + x[I&0x0f] \ - , x[I&0x0f] = tm ) - -#define R(A,B,C,D,E,F,G,H,K,M) do { t0 = SS0(A) + F2(A,B,C); \ - t1 = H + SS1(E) \ - + F1(E,F,G) \ - + K \ - + M; \ - D += t1; H = t0 + t1; \ - } while(0) - - while (words < endp) - { - uint32_t tm; - uint32_t t0, t1; - int t; - /* FIXME: see sha1.c for a better implementation. */ - for (t = 0; t < 16; t++) - { - x[t] = SWAP (*words); - words++; - } - - R( a, b, c, d, e, f, g, h, K( 0), x[ 0] ); - R( h, a, b, c, d, e, f, g, K( 1), x[ 1] ); - R( g, h, a, b, c, d, e, f, K( 2), x[ 2] ); - R( f, g, h, a, b, c, d, e, K( 3), x[ 3] ); - R( e, f, g, h, a, b, c, d, K( 4), x[ 4] ); - R( d, e, f, g, h, a, b, c, K( 5), x[ 5] ); - R( c, d, e, f, g, h, a, b, K( 6), x[ 6] ); - R( b, c, d, e, f, g, h, a, K( 7), x[ 7] ); - R( a, b, c, d, e, f, g, h, K( 8), x[ 8] ); - R( h, a, b, c, d, e, f, g, K( 9), x[ 9] ); - R( g, h, a, b, c, d, e, f, K(10), x[10] ); - R( f, g, h, a, b, c, d, e, K(11), x[11] ); - R( e, f, g, h, a, b, c, d, K(12), x[12] ); - R( d, e, f, g, h, a, b, c, K(13), x[13] ); - R( c, d, e, f, g, h, a, b, K(14), x[14] ); - R( b, c, d, e, f, g, h, a, K(15), x[15] ); - R( a, b, c, d, e, f, g, h, K(16), M(16) ); - R( h, a, b, c, d, e, f, g, K(17), M(17) ); - R( g, h, a, b, c, d, e, f, K(18), M(18) ); - R( f, g, h, a, b, c, d, e, K(19), M(19) ); - R( e, f, g, h, a, b, c, d, K(20), M(20) ); - R( d, e, f, g, h, a, b, c, K(21), M(21) ); - R( c, d, e, f, g, h, a, b, K(22), M(22) ); - R( b, c, d, e, f, g, h, a, K(23), M(23) ); - R( a, b, c, d, e, f, g, h, K(24), M(24) ); - R( h, a, b, c, d, e, f, g, K(25), M(25) ); - R( g, h, a, b, c, d, e, f, K(26), M(26) ); - R( f, g, h, a, b, c, d, e, K(27), M(27) ); - R( e, f, g, h, a, b, c, d, K(28), M(28) ); - R( d, e, f, g, h, a, b, c, K(29), M(29) ); - R( c, d, e, f, g, h, a, b, K(30), M(30) ); - R( b, c, d, e, f, g, h, a, K(31), M(31) ); - R( a, b, c, d, e, f, g, h, K(32), M(32) ); - R( h, a, b, c, d, e, f, g, K(33), M(33) ); - R( g, h, a, b, c, d, e, f, K(34), M(34) ); - R( f, g, h, a, b, c, d, e, K(35), M(35) ); - R( e, f, g, h, a, b, c, d, K(36), M(36) ); - R( d, e, f, g, h, a, b, c, K(37), M(37) ); - R( c, d, e, f, g, h, a, b, K(38), M(38) ); - R( b, c, d, e, f, g, h, a, K(39), M(39) ); - R( a, b, c, d, e, f, g, h, K(40), M(40) ); - R( h, a, b, c, d, e, f, g, K(41), M(41) ); - R( g, h, a, b, c, d, e, f, K(42), M(42) ); - R( f, g, h, a, b, c, d, e, K(43), M(43) ); - R( e, f, g, h, a, b, c, d, K(44), M(44) ); - R( d, e, f, g, h, a, b, c, K(45), M(45) ); - R( c, d, e, f, g, h, a, b, K(46), M(46) ); - R( b, c, d, e, f, g, h, a, K(47), M(47) ); - R( a, b, c, d, e, f, g, h, K(48), M(48) ); - R( h, a, b, c, d, e, f, g, K(49), M(49) ); - R( g, h, a, b, c, d, e, f, K(50), M(50) ); - R( f, g, h, a, b, c, d, e, K(51), M(51) ); - R( e, f, g, h, a, b, c, d, K(52), M(52) ); - R( d, e, f, g, h, a, b, c, K(53), M(53) ); - R( c, d, e, f, g, h, a, b, K(54), M(54) ); - R( b, c, d, e, f, g, h, a, K(55), M(55) ); - R( a, b, c, d, e, f, g, h, K(56), M(56) ); - R( h, a, b, c, d, e, f, g, K(57), M(57) ); - R( g, h, a, b, c, d, e, f, K(58), M(58) ); - R( f, g, h, a, b, c, d, e, K(59), M(59) ); - R( e, f, g, h, a, b, c, d, K(60), M(60) ); - R( d, e, f, g, h, a, b, c, K(61), M(61) ); - R( c, d, e, f, g, h, a, b, K(62), M(62) ); - R( b, c, d, e, f, g, h, a, K(63), M(63) ); - - a = ctx->state[0] += a; - b = ctx->state[1] += b; - c = ctx->state[2] += c; - d = ctx->state[3] += d; - e = ctx->state[4] += e; - f = ctx->state[5] += f; - g = ctx->state[6] += g; - h = ctx->state[7] += h; - } -} |